Фізіолого-біохімічні дослідження

УДК 634.37: 631.526.3: 543.635.62

A.A. РИХТЕР 1 , Б.А. ВИНОГРАДОВ 2 , Н.Ю. МАРЧУК 1 , Е.Л.ШИШКИНА 1

- ¹ Никитский ботанический сад Национальный научный центр НААН Украины Украина, 98648 АР Крым, г. Ялта, пгт Никита
- ² Национальный институт винограда и вина «Магарач» НААН Украины Украина, 98648 АР Крым, г. Ялта, ул. Кирова, 31

АРОМАТ СОПЛОДИЙ ИНЖИРА (FICUS CARICA L.)

Установлено, что среди идентифицированных 46 компонентов летучих соединений из соплодий сортов инжира транс-2-гексеналь и α-пинен формируют освежающий аромат зеленых листьев и хвои, нонаналь, β-дамаскенон, изо-β-дамаскенон и β-кариофиллен — фруктовые нотки аромата. Образец с темно-фиолетовыми соплодиями содержал несколько большее количество ароматобразующих соединений по сравнению с образцами светло-желтых плодов.

Ключевые слова: инжир (*Ficus carica* L.), сорта, соплодия, летучие соединения.

Растения Ficus carica L. (Могасеае Link) одними из первых были введены человеком в культуру в ряде средиземноморских стран, в которых они в настоящее время играют важную роль в экономике сельского хозяйства. Считается, что при посадке 5—6 каприфиг на 100 растений фиг инжир плодоносит в течение 100 лет [4, 14]. Соплодия (сиконии) инжира богаты аминокислотами, содержат мало жиров и холестерина. Наличие полифенолов, флавоноидов и антоцианов обусловливает их высокую антиоксидантную способность [5]. Соплодия F. carica являются хорошим источником минеральных веществ, витаминов и пищевых волокон.

Аромат — один из ценных параметров качества сиконий. Он обусловлен летучими соединениями, которые являются производными аминокислот, жирных кислот, углеводородов и могут быть представлены смесью таких веществ, как альдегиды, спирты, кетоны, эфиры, терпены и др. Содержание ароматических соединений соплодий варьирует в зависимости от особенностей сорта, степени их зрелости, технологических параметров переработки, условий хранения и климата региона произрастания [6, 14]. При изучении аромата соплодий у 20 видов рода *Ficus* L. установлено наличие от 2 (*F. uncinata* Becc.)

© А.А. РИХТЕР, Б.А. ВИНОГРАДОВ, Н.Ю. МАРЧУК, Е.Л.ШИШКИНА, 2014 до 47 (F. deltoidea Jack.) компонентов. Среди 35 соединений, выявленных у *F. carica*, преобладали бензиловый спирт (7,8 %), цис-фураноид линалоол-оксид (17,0 %), транс-фураноид линалоол-оксид (10,8 %), линалоол (36,7 %), хо-триенол (7,3 %), β-бурбонен (4,3 %), β-кариофиллен (3,5 %) [9], в мякоти плодов ряда сортов инжира — 3-метил-бутанол, гексанол, (Е)-2-гексанал, бензилальдегид, нонаналь, гермакрен-D, β-циклоцитраль, эвгенол [14]. При экстракции летучих соединений этилацетатом среди компонентов аромата сиконий идентифицировано 108 соединений с преобладанием фурфурола (10,5 %), 5-метил-2-фуральдегида (10,1 %), бензенметанола (2,4 %), бензенацетальдегида (6,6 %), пальмитиновой кислоты (15,7 %) и этилпальмитата (8,8%). В листьях инжира выявлен 121 компонент с преобладанием 2-фуранкарбоксиальдегида (3,8 %), бензальдегида (4,0 %), тетт-бутилфенола (4,3 %), в-дамаскенона (10,0%), бензилового спирта (4,6%), бегеновой кислоты (4,8 %) и псоралена (10,1 %) [5]. Высокое содержание альдегидов и спиртов в соплодиях *F. carica* считают одним из наиболее важных показателей их качества. Так, у сорта Garmsar суммарное содержание альдегидов составило 1,25 % с преобладанием нонаналя (0,57%,), а в сумме спиртов 4,24% доминировали деканол (1,98 %) и карвакрол (1,22%). При экстракции летучих соединений

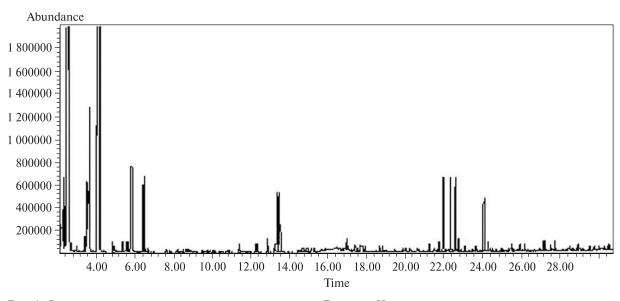


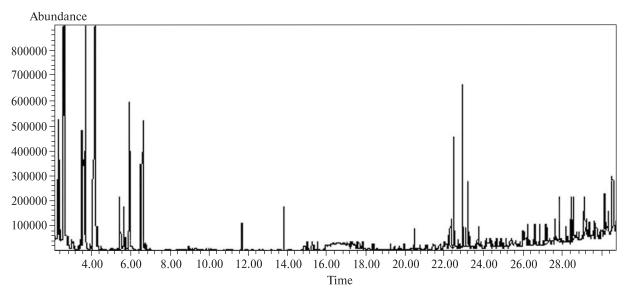
Рис. 1. Состав летучих веществ в соплодиях инжира сорта Белый из Искии

Figure 1. The composition of volatile substances in seedhead of fig variety White from Ischia

смесью пентан: диэтиловый эфир (1:2) среди 53 компонентов преобладали деканол (1,9–1,2%), карвакрол (1,2–0,9%), р-цимен (1,2–1,3%), трикозан (3,1–3,7%), тетракозан (1,9–2,2%), пентакозан (3,1–3,4%), гептакозан (8,9–7,9%), октакозан (8,4–8,42%) и нонакозан (8,6–8,9%) [7]. Особенности химического состава плодов разных сортов инжира освещены нами в предыдущих публикациях [2].

Во время селекции сортов инжира предусмотрено выведение образцов с сикониями привлекательного внешнего вида, с устойчивостью к растрескиванию, хорошим ароматом и высоким содержанием биологически активных соединений.

Цель работы — изучить компонентный состав аромата соплодий некоторых сортов инжира, интродуцированных на Южный берег Крыма и созданных в Никитском ботаническом саду.


Материал и методы

Исследовали четыре сорта инжира *F. carica* — Белый из Искии, Кадота, Консервный Никитский, Финиковый Неаполитанский, которые произрастают в коллекционных на-

саждениях Никитского ботанического сада на Южном берегу Крыма.

Летучие соединения выделяли методом гидродистилляции. Гомогенат соплодий объемом 1 л смешивали с дистиллированной водой в соотношении (1,0:1,3), гидродистиллят пропускали через 5-8 мл пентана и собирали в делительную воронку объемом 250 мл. Затем проводили трехкратную экстракцию пентаном с последующим его концентрированием в токе гелия. Полученный концентрат (0,5 мл) запаивали в стеклянные ампулы и хранили при температуре -10 °C.

Пентановый экстракт летучих соединений соплодий (объемом 1,0 мкл) анализировали с помощью Agilent Technology 6890 с масс-спектрометрическим детектором 5973 для компьютерной идентификации и количественной оценки. Колонка HP-1 длиной 30 м, внутренний диаметр — 0,25 мм. Температуру термостата программировали от 50 до 250 °C со скоростью 4 °/мин. Температура инжектора — 250 °C. Газноситель — гелий, скорость потока — 1 мл/мин. Перенос от газового хроматографа (Γ X) к массспектрометру (MC) прогревали до 230 °C. Температуру источника поддерживали на уровне 200 °C. Электронную ионизацию проводи-

Puc. 2. Состав летучих веществ в соплодиях инжира сорта Консервный Никитский **Figure 2.** The composition of volatile substances in seedhead of fig variety Konservny Nikitsky

ли при 70 eV в ранжировке масс m/z 29 до 250. Идентификацию выполняли путем сравнения полученных масс-спектров с данными библиотеки NIST05-WILEY 2007 (около 500 тыс. масс-спектров) [3].

Результаты и обсуждение

На протяжении 115 лет (с 1812 по 1927 г.) в Никитский ботанический сад было интродуцировано 47 сортов инжира, но наиболее активно эта работа проводилась в период с 1926 по 1970 г., в результате коллекция сортов данной культуры расширилась до 367 образцов. Растения поступали главным образом из Абхазии, Австрии, Азербайджана, Албании, Болгарии, Германии, Грузии, Италии, США, Туниса и Франции.

При рассмотрении товарных качеств сиконий обращали внимание на привлекательный внешний вид в свежем, консервированном и сушеном виде. Для сушки важны светлая окраска кожицы и мякоти и отсутствие привкуса млечного сока. Соплодия с синей и фиолетовой кожицей и темной мякотью успешно применяют для производства компотов [1].

Белый из Искии (White Ischia). Сорт ввезен в 1929 г. из Калифорнии. В Крыму дает два уро-

жая в год. Деревья с очень густой сильно раскидистой плоско-округлой кроной. Соплодия второй генерации размером в среднем 3,5× ×3,6 см, массой 20—30 г, округло-сферические, с короткими шейками, ребристые. Плодоножки толстые и короткие (0,4—0,6 см). Кожица желтовато-зеленая со светлыми буровато-фиолетовыми полосами, желтым опушением, слабым восковым налетом и белыми пятнышками. Плодоложе кремовое. Мякоть темно-розовая, очень сладкая, приятная на вкус, с небольшой кислинкой.

Кадота (Kadota). Сорт интродуцирован из Франции в 1901 г., в 1929 г. получен из США. В Крыму дает два урожая в год. Первый — слабый, не имеющий практического значения, второй — высокий. Деревья средней величины, раскидистые, с кроной широкой полушаровидной формы. Соплодия второй генерации размером 6×5 см, массой 50—60 г. Кожица плотная, темно-зеленая, голубоватая, мелкоребристая, с редкими белыми пятнышками. Плодоложе тонкое, белое. Сиконии без семян, светло-желтые или матовые, с нежной кожицей, толстым подкожным слоем, тонкой светло-розовой мякотью и небольшой полостью.

Консервный Никитский. Сорт выделен в 1948 г. в Крыму из сеянцев от свободного опыления. Деревья среднерослые, пониклые, с округлой кроной. Соплодия размером 5×4 см, массой 40-50 г, округлые, с узкими длинными шейками на коротких (0,5-1,0 cm) ножках, среднеребристые. Кожица тонкая, плотная, темно-синяя, с сильным восковым налетом, почти без опушения. Плодоложе белое. Мякоть темная, карминово-красная, сладкая, нежная, приятная на вкус, с небольшой кислинкой и приятным ароматом. Компоты из плодов этого сорта имеют высокие вкусовые качества и красивый внешний вид. Сушеные соплодия, несмотря на темную окраску, часто получали высокую дегустационную оценку.

Финиковый Неаполитанский (Datte de Naples). Растения этого сорта были получены из Франции (г. Орлеан) в 1901 г. и из Тбилисского ботанического сада в 1918 г. Дает один урожай соплодий. Самоплодный. Деревья сильнорослые, с высокой и широкой округлой кроной. Сиконии среднего размера (5,0×4,5 см), массой 40-50 г., овально-грушевидные, с толстыми длинными шейками, на коротких ножках (0,4-0,5) см). Кожица нежная, но плотная, желтовато-зеленая, с красно-фиолетовым размытым румянцем, более интенсивным с солнечной стороны. Плодоложе зеленовато-кремовое. Мякоть темно-малиновая, маслянистая. Соплодия сладкие, с приятной кислинкой и незначительным привкусом млечного сока, очень вкусные в свежем и сушеном виде [1].

В результате изучения аромата сиконий инжира методом гидродистилляции с последующей ГЖХ-МС показано, что преобладающими соединениями являются транс-2-гексеналь (3,54–6,07%), α -пинен (1,03–2,03%), фенилацетальдегид (2,06–4,90%), транс-линалоолоксид (1,32–4,10%), линалоол (1,07–12,41%), тридекан (1,05–2,15%), β -дамаскенон (9,30–11,87%), тетрадекан (8,88–15,54%), изо- β -дамаскенон (6,31–14,90%), гексадекан (2,67–3,38%), тетрадеканаль (1,10–3,09%), пентадеканаль (1,65–6,51%), гексадеканаль (1,06–3,32%). Сочетание этих соединений обусловливает сортовые особенности аромата свежих

соплодий. Образец с темно-фиолетовыми соплодиями ('Консервный Никитский') содержал несколько большее количество ароматобразующих соединений (транс-2-гексеналь, фенилацетальдегид, нонаналь, 2-метилоктанол, тридекан, тетрадекан, гексадекан, тетра-, пента- и гексадеканали) по сравнению со светложелтыми плодами (таблица, рис. 1 и 2).

Для видов рода *Ficus* характерны определенные насекомые-опылители. Например, в опылении цветков *F. semicordata* J.E. Smith (subgenus *Sycomorus*, section *Hemicardia*) участвует *Caratosolen gravelyi* Grandi (*Agaonidae*). Среди летучих соединений, привлекающих его, преобладал 4-метиланизол (93,6–98,4%), в смеси терпеноидов — α -пинен, сабинен, 1,8-цинеол, (Е) В-оцимен, среди сесквитерпеноидов — α -копаен и β -кариофиллен [12]. Опылителем вида *F. montana* Burm. является *Liporrhopalum tentacularis* Grandi. [13], а *F. carica* — *Blastofaga psenes* Cavolini [8].

Цветущие растения разных видов одновременно посещаются разными опылителями, выделяющими качественно отличающиеся химические сигналы. Большинство соединений, обуславливающих аромат цветков растений, являются успокаивающими составляющими [10].

Показано, что смесь монотерпеновых соединений (линалоол, бензиловый спирт, циси транс-линалоолоксид) в определенной пропорции необходима для привлечения *Blastofaga psenes*, специализированного опылителя *F. carica* [12].

Проведено тестирование ряда соединений, играющих важную роль в химическом посредничестве облигатного и специфического взаимодействия между соплодиями инжира и осами-бластофагами [10]. Среди летучих органических веществ сиконий инжира выявлены электрофизиологически активные соединения (цис-линалоол-оксид, транс-линалоолоксид, линалоол, β -кариофиллен, гермакрен D и α -копаен). В мужских соплодиях весной и летом, а в женских — летом содержание цислиналоол-оксида достигало соответственно 2,4; 2,8 и 3,7%, линалоола — 86,1; 41,9 и 35,9 %,

Химический состав летучих соединений, формирующих аромат сиконий инжира Chemical composition of volatile compounds formed fragsance of figs seedheads

№ п/п	Соединение	Т, мин	Сорт			
			Белый из Искии	Финиковый Неаполитан- ский	Кадота	Консервный Никитский
1	Фурфурол	4,94	2,24	0,88	0,05	0,07
2	Транс-2-гексеналь	5,39	3,54	3,73	4,54	6,07
3	Гептаналь	6,67	0,88	0,86	1,76	0,78
4	α-Пинен	7,66	1,55	2,03	1,03	1,61
5	Октанол-3	7,81	0,00	0,36	0,07	0,27
6	6-Метилгептанон-2	8,24	0,63	0,90	1,23	2,21
7	Бензальдегид	8,64	1,41	0,61	0,49	0,46
8	Гептанол	8,79	1,14	1,32	1,07	1,64
9	Гербоцид 1	9,47	1,60	0,98	0,32	0,00
10	Декан	9,76	0,82	1,06	0,77	1,11
11	Октаналь	9,91	0,05	0,04	0,47	0,52
12	Гербоцид 2	9,98	1,32	0,97	0,11	0,00
13	Δ^3 -карен	10,12	0,30	0,33	0,29	0,34
14	Лимонен	10,12	0,06	0,04	0,30	0,31
15	Фенилацетальдегид	11,40	2,06	3,88	2,75	4,90
16	Транс-линалоол-оксид	12,31	4,10	3,21	3,76	1,32
17	Транс-линалоол-оксид Цис-линалоол-оксид	12,31	2,49	1,77	2,02	0,21
18	Метилбензоат	13,20	0,00	0,97	0,69	1,20
19	Ундекан	13,20	0,00	1,19	0,03	0,56
20	ундекан Линалоол		,		,	
		13,33	12,41	1,29	4,48	1,07
21	Нонаналь	13,50	0,08	4,43	5,74	6,44
22	Не идентифицирован	14,64	1,52	1,93	1,71	2,18
23	6-Метилоктанол	14,90	1,22	2,21	1,86	2,25
24	3,7-Диметилоктанол	16,80	0,05	0,63	0,00	0,70
25	Додекан	16,90	0,00	1,94	1,04	2,15
26	α-Терпинеол	16,98	1,71	0,18	0,93	0,00
27	1,1,6-Триметил-1,2,3,4-тетрагидро- нафталин	17,39	3,50	0,89	1,65	1,81
28	α-4-Диметил-3-циклогексен- 1-ацетальдегид	17,65	2,74	2,05	1,26	0,13
29	1-ацетальдегид β-Циклоцитраль	17,71	2,36	2,19	1,17	0,00
30	2-Метилоктанол	17,71	1,59	1,51	1,77	2,28
31	Гераниол	18,66	1,21	0,11	0,41	0,13
32	1,6,8-Триметил-1,2,3,4-	18,78	1,21	0,64	0,55	0,71
32	тетрагидронафталин (1)	10,76	1,21	0,04	0,55	0,71
33	тетрагидронафталин (т) Тридекан	19,98	1,05	1,54	1,43	2,15
34	Триметил-тетрагидронафталин (1)	20,54	1,03	0,57	0,00	0,00
35	Триметил-тетрагидронафталин (1)	21,21	1,30	0,90	0,53	0,00
36	гриметил-тетрагидронафталин (2) β-Дамаскенон	21,21	9,30	10,88	11,87	10,61
	• • •				11,87	
37 38	Тетрадекан Изо-β-дамаскенон	22,30	8,88	12,82		15,54
		22,57	11,63	6,31	14,90	8,78
39	β-Кариофиллен Гариоурау D	22,85	0,07	6,25	0,13	0,10
40	Гермакрен D	24,04	5,95	3,35	0,05	1,67
41	Пентадекан	24,22	0,10	2,08	1,13	1,79
42	Додеканаль	24,45	0,00	0,59	0,88	1,41
43	Гексадекан	25,91	2,76	3,12	2,67	3,38
44	Тетрадеканаль	26,15	1,10	1,31	1,45	3,09
45	Пентадеканаль	27,13	1,94	1,65	6,51	4,74
46	Гептадекан	27,44	0,00	0,92	0,83	0,00
47	Гексадеканаль	27,70	1,06	2,58	1,39	3,32
	Сумма		100	100	100	100

β-кариофиллена — 1,9; 37,7 и 24,6 %, гермакрена D - 0,5; 8,4 и 4,1 %. При проведении тестирования эти 4 соединения вызывали ответную физиологическую реакцию у Blastofaga psenes. Подтверждено, что каждое тестируемое мужское растение выделяет определенные запахи в разные фазы вегетации [8]. Мужские и женские сиконии выделяют одни и те же соединения, но в разном количестве и пропорциях. В выделениях мужских соплодий преобладали линалоол, цис- и транс-линалоолоксид, а в женских — оцимен, бензиловый спирт, лимонен и смесь сесквитерпеноидов. Выделение соплодиями композиций этих смесей по срокам совпадало у растений одного пола и было синхронизировано с наличием бластофаг. Время максимальной эмиссии всех соединений, привлекающих опылителей, соответствовало цветению мужских и женских растений [11]. По мере увеличения биомассы сиконий инжира, содержание электрофизиологически активных соединений снижается, в зрелых плодах установлено разное их количество (см. таблицу).

Транс-2-гексеналь и α -пинен, вероятно, придают соплодиям освежающий аромат зеленых листьев и хвои, цис-, транс-линалоол-оксид и линалоол — запах цветков ленкоранской акации и ландыша, нонаналь — аромат плодов апельсина, β -дамаскенон, изо- β -дамаскенон, ундекан и β -кариофиллен — разных фруктов [6], лимонен — плодов цитрусовых, в частности, апельсина, а бензальдегид — семян горького миндаля [3].

Таким образом, особенности аромата соплодий сортов инжира обусловлены наличием транс-2-гексеналя, нонаналя, β-дамаскенона, тетрадекана и изо-β-дамаскенона, придающими им специфический фруктовый аромат. Варьирование содержания этих компонентов в соплодиях изученных сортов инжира, вероятно, обусловливает индивидуальные особенности аромата отдельных образцов, которые учитывают при дегустации сортов.

1. *Арендт Н.К.* Сорта инжира / Н.К. Арендт // Тр. Никит. ботан. сада. — 1972. — Т. 56. — С. 5—235.

- 2. *Рихтер А.А.* Совершенствование качества плодов южных культур / А.А. Рихтер. Симферополь: Таврия, 2001. 426 с.
- 3. *Рихтер А.А.* Аромат плодов сортов абрикоса / А.А. Рихтер, В.М. Горина, Б.А. Виноградов // Вісн. аграрної науки південного регіону. С/г. та біол. науки. Одеса: СМИЛ, 2012. Вип. 12—13. С. 95—101.
- Субтропические плодовые и орехоплодные культуры. / А.Н. Казас, Т.В. Литвинова, Л.Ф. Мязина и др. Симферополь ИТ: Ариал, 2012. 304 с.
- Analysis on volatile constituents in leaves and fruits of Ficus carica by GC-MS / J. Li, Y-Z. Tian, B.Y. Sun [et al.] // Chinese Herbal Medicines. 2011. Vol. 4, N 1. P. 63–69.
- Analysis of Ficus carica L. volatile components and mineral content / E. Ficsor, K. Szentmihalyi, E. Lemberkovics et al.// Eur. Chem. Bull. — 2013. — Vol. 2, N 3. — P. 126–129.
- Darjazi B.B. The effects of climatic conditions and geographical locations on the volatile flavor compounds of fig (*Ficus carica* L.) fruit from Iran / B.B. Darjazi, K. Larijani// Afr. J. Biotechnol. 2012. Vol. 11, N 38. P. 9196—9204.
- 8. *Evidence* for intersexual chemical mimicry in a dioecious plant / C. Soler, M. Proffit, J.-M. Bessiere [et al.] // Ecology Letters. 2012. Vol. 15. P. 978—985
- 9. *Fig* volatile compounds a first comparative study // Phytochemistry / L. Grison-Pige, M. Hossaert-McKey, J.M. Greeff [et al.]. 2002. Vol. 61, N 1. P. 61—71
- Floral scents: their roles in nursery pollination mutualisms / M. Hossaert-McKey, C. Soler, B. Schatz [et al.] // Chemoecology. 2010. Vol. 20, N 2. P. 75–88.
- Limited intersex mimicry of floral odour in Ficus carica /L. Grison-Pige, J.-M. Bessiere, T.C.J. Turlings et al.// Functional Ecology. 2001. Vol. 15, N 4. P. 551–558.
- Private channel: a single unusual compound assures specific pollinator attraction in *Ficus semicordata* / C. Chen, Q. Song, M. Proffit et al.// Functional Ecology. 2009. Vol. 23, N 5. P. 941—950.
- Sexual differences in the attractiveness of figs to pollinators: females stay attractive for longer / N. Suleman,
 Raja, Y. Zhang [et al.] // Ecological Entomology. —
 2011. Vol. 36. P. 417–424.
- 14. Volatile profiling of Ficus carica varieties by HS-SPME and GC-IT-MS / A.P. Oliveira, L.R. Silva, P. Guedes de Pinho [et al.] // Food Chemistry. 2010. Vol. 123. P. 548–557.

Поступила в редакцию 27.12.2013 г. Рекомендовала к печати С.В. Клименко 0.0. *Puxmep* ¹, *Б.О. Виноградов* ²], *H.Ю. Марчук* ¹, *О.Л. Шишкіна* ¹

- ¹ Нікітський ботанічний сад Національний науковий центр НААН України, Україна, АР Крим, м. Ялта, смт Нікіта
- ² Національний інститут винограду і вина «Магарач» НААН України, Україна, АР Крим, м. Ялта

АРОМАТ СУПЛІДЬ ІНЖИРУ (FICUS CARICA L.)

Установлено, що серед ідентифікованих 46 компонентів летючих сполук суплідь сортів інжиру (*Ficus carica* L.) транс-2-гексенал і α-пінен формують освіжаючий аромат зеленого листя і хвої, нонаналь, β-дамаскенон, ізо-β-дамаскенон і β-каріофіллен — фруктові нотки аромату. Зразок з темно-фіолетовими супліддями містив дещо більшу кількість ароматутворюючих сполук порівняно зі зразками світложовтих плодів.

Ключові слова: інжир (*Ficus carica* L.), сорти, супліддя, летючі сполуки.

A.A. Richter¹, B.A. Vinogradov², N.Yu. Marchuk¹, E.L. Shishkina¹

- ¹ Nikitsky Botanical Garden National Scientific Center, National Academy of Agrarian Sciences of Ukraine, Ukraine, Crimea, Yalta, Nikita
- ² National Institute for Vine and Wine "Magarach", National Academy of Agrarian Sciences of Ukraine, Ukraine, Crimea, Yalta

THE FRAGRANCE OF FIGS (FICUS CARICA L.) FRUITS

It is shown, that among identificated there are 46 components of volatile compounds in figs varieties (Ficus carica L.) trans-2-gecsanal and α -pinene formed refreshing fragrance of green leaves and needles, nonanal, β -damascenone, iso- β -damascenone, β -cariofillen — fruit flavor characteristics. A sample with dark purple fruit contained a little more aroma compounds compared samples with light yellow fruit.

Key words: Ficus carica L., varieties, figs, volatile compounds.