Abstract
Phenology has not lost its relevance, especially now, when the global warming is making itself known more and more clearly. Phenological data obtained according to the BBCH system have a wide range of application: from the biological identification of global and regional weather and climate changes to the use in the selection of new cultivars of plants adapted to modern living conditions. We found out the BBCH model of phenological growth of 19 cultivars of Cydonia oblonga Mill. (Rosaceae) of the collection of the M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine (NBG). In the climatic conditions of Ukraine, quince goes through an entire cycle of seasonal growth. Codification of the phenological phases of growth according to the BBCH system showed that for quince, as for other fruit plants of the Rosaceae family, is characterized by eight of the ten principal stages of seasonal growth, in particular: the development of buds (principal growth stage 0: bud development), leaves (principal growth stage 1: leaf development), shoots (principal growth stage 3: shoot development), inflorescence (principal growth stage 5: inflorescence emergence), flowering (principal growth stage 6: flowering), fruit development and ripening (principal growth stage 7: fruit development; principal growth stage 8: maturity of fruit) and senescence and onset of dormancy (principal growth stage 9: senescence, beginning of dormancy). Cydonia oblonga has vegetative and vegetative-generative buds. It differs from some other fruit plants of the Rosaceae family by the specific course of the principal growth stage 5. Quince flowers are initiated from the apical meristem of one-year shoots, therefore they do not have phenophase 51, and at the stage of development 53 they are visually invisible due to the fact that they are tightly wrapped by leaves. The studied quince cultivars of the NBG collection are similar to each other in the course of most phenophases of seasonal development. The BBCH model of the seasonal growth of quince in Ukraine corresponds to two other comparable models that record the seasonal growth of this species in Spain (Murcia region) in a semi-arid Mediterranean climate with very mild winters and hot summers and Brazil (Pelotas region) in a warm tropical climate. These facts confirm the ecological plasticity of the species and its high adaptive and reproductive capacity, which can be the key to the expansion of the region of quince cultivation in Ukraine, including through the creation of industrial plantations.
References
Abdollahi, H. (2019). A review on history, domestication and germplasm collections of quince (Cydonia oblonga Mill.) in the world. Genetic Resources and Crop Evolution, 66(5), 1041–1058. https://doi.org/10.1007/s10722-019-00769-7
Abdollahi, H. (2021). Quince. In D. Mandal, U. Wermund, L. Phavaphutanon & R. Cronje (Eds.), Temperate fruits (pp. 183–246). Apple Academic Press. https://doi.org/10.1201/9781003045861
Abed, S.N., Bibi, S., Jan, M., Talha, M., Islam, N.U., Zahoor, M., & Al-Joufi, F.A. (2022). Phytochemical composition, antibacterial, antioxidant and antidiabetic potentials of Cydonia oblonga bark. Molecules, 27(19), Article 6360. https://doi.org/10.3390/molecules27196360
Al-Snafi, A.E. (2016). The medical importance of Cydonia oblonga – a review. IOSR Journal of Pharmacy, 6(6), 87–99.
Al-Zughbi, I., & Krayem, M. (2022). Quince fruit Cydonia oblonga Mill. nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: a review. Food Chemistry, 393, Article 133362. https://doi.org/10.1016/j.foodchem.2022.133362
Atay E. (2013). Phenological stages of medlar (Mespilus germanica L. ‘İstanbul’) according to the BBCH Scale. Journal of Biological and Environmental Sciences, 7(20), 103–107.
Baidya, A., Anwar Ali, M., & Atta, K. (2022). Climate change and abiotic stresses in plants. In J. Ngui Kimatu (Ed.), Advances in plant defense mechanisms. IntechOpen. https://doi.org/10.5772/intechopen.105575
Baroni, M.V., Fabani, M.P., Adan, F., Podio, N.S., & Wunderlin, D.A. (2022). Effect of geographical location, processing and simulated digestion on antioxidant characteristics of quince (Cydonia oblonga). Heliyon, 8(11), Article e11435. https://doi.org/10.1016/j.heliyon.2022.e11435
Benedek, P., Szabó, T., & Nyéki, J. (2000). The effect of the limitation of insect pollination period on the fruit set and yield of quince cultivars (Cydonia oblonga Mill.). International Journal of Horticultural Science, 6(3), 103–108. https://doi.org/10.31421/ijhs/6/3/110
Blanda, G., Rodriguez-Roque, M.J., Comandini, P., Flores-Cordova, M.A., Salas-Salazar, N.A., Oscar, C.A., & Soto-Caballero, M.C. (2020). Phenolic profile and physicochemical characterization of quince (Cydonia oblonga Mill.) fruits at different maturity index. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2306–2315. https://doi.org/10.15835/nbha48412108
Catling, P.M., & Mitrow, G. (2015). Cydonia Mill. In L. Brouillet (Ed.), Flora of North America. North of Mexico. Vol. 9. Magnoliophyta: Picramniaceae to Rosaceae (pp. 486–487). Oxford University Press USA. http://floranorthamerica.org/Cydonia
Chen, Y., Jiang, P., Thammannagowda, S., Liang, H., & Wilde, H.D. (2013). Characterization of peach TFL1 and comparison with FT/TFL1 gene families of the Rosaceae. Journal of the American Society for Horticultural Science, 138(1), 12–17. https://doi.org/10.21273/jashs.138.1.12
Chmielewski, F.-M. (2013). Phenology in agriculture and horticulture. In M. Schwartz (Ed.), Phenology: an integrative environmental science (pp. 539–561). Springer. https://doi.org/10.1007/978-94-007-6925-0_29
Chmielewski, F.-M., Müller, A., & Bruns, E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology, 121(1–2), 69–78. https://doi.org/10.1016/s0168-1923(03)00161-8
Costa, G., & Ramina, A. (2014). Temperate fruit species. In G.R. Dixon & D.E. Aldous (Eds.), Horticulture: plants for people and places. Vol. 1: Production horticulture (pp. 97–121). https://doi.org/10.1007/978-94-017-8578-5_4
Denisow, B., & Malinowski, D.P. (2016). Climate change and the future of our world – implications for plant phenology, physiology, plant communities, and crop management. Acta Agrobotanica, 69(2), Article 1683. https://doi.org/10.5586/aa.1683
Dox, I., Prislan, P., Gričar, J., Mariën, B., Delpierre, N., Flores, O., Leys, S., Rathgeber, C.B.K., Fonti, P., & Campioli, M. (2021). Drought elicits contrasting responses on the autumn dynamics of wood formation in late successional deciduous tree species. Tree Physiology, 41(7), 1171–1185. https://doi.org/10.1093/treephys/tpaa175
Drepper, B., Gobin, A., Remy, S., & Van Orshoven, J. (2020). Comparing apple and pear phenology and model performance: what seven decades of observations reveal. Agronomy, 10(1), Article 73. https://doi.org/10.3390/agronomy10010073
Estiarte, M., & Peñuelas, J. (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21(3), 1005–1017. https://doi.org/10.1111/gcb.12804
Esumi, T., Tao, R., & Yonemori, K. (2007a). Comparison of early inflorescence development between Japanese pear (Pyrus pyrifolia Nakai) and quince (Cydonia oblonga Mill.). Journal of the Japanese Society for Horticultural Science, 76(3), 210–216. https://doi.org/10.2503/jjshs.76.210
Esumi, T., Tao, R., & Yonemori, K. (2007b). Relationship between floral development and transcription levels of LEAFY and TERMINAL FLOWER 1 homologs in Japanese pear (Pyrus pyrifolia Nakai) and quince (Cydonia oblonga Mill.). Journal of the Japanese Society for Horticultural Science, 76(4), 294–304. https://doi.org/10.2503/jjshs.76.294
Esumi, T., Tao, R., & Yonemori, K. (2008). Expression analysis of the LFY and TFL1 homologs in floral buds of Japanese pear (Pyrus pyrifolia Nakai) and quince (Cydonia oblonga Mill.). Journal of the Japanese Society for Horticultural Science, 77(2), 128–136. https://doi.org/10.2503/jjshs1.77.128
Gallinat, A.S., Ellwood, E.R., Heberling, J.M., Miller-Rushing, A.J., Pearse, W.D., & Primack, R.B. (2021). Macrophenology: insights into the broad-scale patterns, drivers, and consequences of phenology. American Journal of Botany, 108(11), 2112–2126. https://doi.org/10.1002/ajb2.1793
Gallinat, A.S., Primack, R.B., & Wagner, D.L. (2015). Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 30(3), 169–176. https://doi.org/10.1016/j.tree.2015.01.004
Ganeva, T. (2009). Leaf epidermis structure in Cydonia oblonga Mill. (Rosaceae). Biotechnology & Biotechnological Equipment, 23(supl. 1), 965–967. https://doi.org/10.1080/13102818.2009.10818582
Gao, X., Dai, J., Tao, Z., Shahzad, K., & Wang, H. (2023). Autumn phenology of tree species in China is associated more with climate than with spring phenology and phylogeny. Frontiers in Plant Science, 14, Article 1040758. https://doi.org/10.3389/fpls.2023.1040758
Gordo, O., & Sanz, J.J. (2005). Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia, 146(3), 484–495. https://doi.org/10.1007/s00442-005-0240-z
Griñán, I., Galindo, A., Rodríguez, P., Morales, D., Corell, M., Centeno, A., Collado-González, J., Torrecillas, A., Carbonell-Barrachina, A.A., & Hernández, F. (2019). Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Scientia Horticulturae, 244, 68–74. https://doi.org/10.1016/j.scienta.2018.09.013
Gu, C.Z., & Spongberg, S.A. (2003). Cydonia Mill. In Flora of China Editorial Committee (Eds.), Flora of China. Vol. 9 (Pittosporaceae through Connaraceae) (p. 170). Science Press, Beijing, and Missouri Botanical Garden Press.
Hack, H., Bleiholder, H., Buhr, L., Meier, U., Schnock-Fricke, U., Weber, E., & Witzenberger, A. (1992). A uniform code for phenological growth stages of mono- and dicotyledonous plants – extended BBCH scale, general. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 44(12), 265–270.
Halász, J., Hoffman, V., Szabó, Z., Nyéki, J., Szabó, T., & Hegedűs, A. (2009). Characterization of quince (Cydonia oblonga Mill.) cultivars using SSR markers developed for apple. International Journal of Horticultural Science, 15(4), 7–10. https://doi.org/10.31421/ijhs/15/4/833
Hanan, E., Sharma, V., & Ahmad, F.J. (2020). Nutritional composition, phytochemistry and medicinal use of quince (Cydonia oblonga Miller) with emphasis on its processed and fortified food products. Journal of Food Processing & Technology 11(6), Article 831.
Hunter, J.M., & Dunster, S. (2014). Quinces: growing and cooking. Marion Boyars.
Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., & Bhat, T.A. (2021). Quince (Cydonia oblonga) – morphology, taxonomy, composition and health benefits. In S.Z. Hussain, B. Naseer, T. Qadri, T. Fatima & T.A. Bhat (Eds.), Fruits grown in highland regions of the Himalayas: nutritional and health benefits (pp. 49–62). Springer International Publishing. https://doi.org/10.1007/978-3-030-75502-7_4
Iler, A.M., CaraDonna, P.J., Forrest, J.R., & Post, E. (2021). Demographic consequences of phenological shifts in response to climate change. Annual Review of Ecology, Evolution, and Systematics, 52(1), 221–245. https://doi.org/10.1146/annurev-ecolsys-011921-032939
Inouye, D.W. (2022). Climate change and phenology. Wiley Interdisciplinary Reviews: Climate Change, 13(3), Article e764. https://doi.org/10.1002/wcc.764
Jiang L, Geng D, Zhi F, Li Z, Yang Y, Wang, Y., Shen, X., Liu, X., Yang, Y., Xu, Y., Tang, Y., Du, R., Ma, F., Guan, Q., & Zhang, J. (2022). A genome-wide association study provides insights into fatty acid synthesis and metabolism in Malus fruits. Journal of Experimental Botany 73(22), 7467−7476. https://doi.org/10.1093/jxb/erac372
Jiang, L., Li, X., Lyu, K., Wang, H., Li, Z., Qi, W., Zhang, L., & Cao, Y. (2024). Rosaceae phylogenomic studies provide insights into the evolution of new genes. Horticultural Plant Journal, In press. https://doi.org/10.1016/j.hpj.2024.02.002
Kafkas, S., Imrak, B., Kafkas, N.E., Sarıer, A., & Kuden, A. (2018). Quince (Cydonia oblonga Mill.) breeding. In J. Al-Khayri, S. Jain & D. Johnson (Eds.), Advances in plant breeding strategies: fruits. Vol. 3 (pp. 277–304). Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_7
Khoshbakht, K., & Hammer, K. (2006). Savadkouh (Iran) – an evolutionary centre for fruit trees and shrubs. Genetic Resources and Crop Evolution, 53(3), 641–651. https://doi.org/10.1007/s10722-005-7467-8
Khoubnasabjafari, M., & Jouyban, A. (2011). A review of phytochemistry and bioactivity of quince (Cydonia oblonga Mill.). Journal of Medicinal Plants Research, 5(16), 3577–3594.
Klymenko, S.V. (1993). Common quince. Naukova dumka. (In Russian)
Klymenko, S.V. (2009). Quince (Cydonia oblonga Mill.) in the forest-steppe of Ukraine: results of introduction and selection. In The materials of the international conference “Actual problems of applied genetics, breeding and biotechnology of plants” (pp. 117–122). Yalta. (In Ukrainian)
Klymenko, S.V. (2011). Quince: bioecology, morphology, reproduction, cultivars. Logos. (In Russian)
Klymenko, S.V., & Ilyinska, A.P. (2019). Morphometric parameters of the fruits of the cultivars of Cydonia oblonga Mill. of the collection of M.M. Gryshko National botanical garden of NAS of Ukraine. Proceedings of Biosphere Reserve “Askania Nova”, 21, 328–336. (In Ukrainian). https://doi.org/10.53904/1682-2374/2019-21/47
Koçyiğit, M., Büyükkılıç, B., Altınbaşak, O., & Ubul, N. (2015). Comparative leaf anatomy of three food plants that are used medically; Mespilus germanica L., Malus sylvestris (L.) Mill. subsp. orientalis and Cydonia oblonga Mill.(Rosaceae). Journal of Faculty of Pharmacy of Istanbul University, 46(1), 39–48.
Kokaj, T. (2021). Morphological evaluation of Cydonia oblonga sort in genetic bank of Albania. International Journal of Agriculture, Environment and Bioresearch, 6(2), 24–33. https://doi.org/10.35410/IJAEB.2021.5619
Kostecka-Gugała, A. (2024). Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as medicinal fruits of the Rosaceae family: current state of knowledge on properties and use. Antioxidants, 13(1), Article 71. https://doi.org/10.3390/antiox13010071
Kurokura, T., Mimida, N., Battey, N.H., & Hytönen, T. (2013). The regulation of seasonal flowering in the Rosaceae. Journal of Experimental Botany, 64(14), 4131–4141. https://doi.org/10.1093/jxb/ert233
Liu, Q., Fu, Y.H., Zhu, Z., Liu, Y., Liu, Z., Huang, M., Janssens, I.A., & Piao, S. (2016). Delayed autumn phenology in the northern hemisphere is related to change in both climate and spring phenology. Global Change Biology, 22(11), 3702–3711. https://doi.org/10.1111/gcb.13311
Maghlakelidze, E., Bobokashvili, Z., & Maghradze, D. (2017). Biological and agronomical characteristics of local and introduced plum (Prunus domestica L.) cultivars in Georgia. International Journal of Horticultural Science and Technology, 4(2), 157–166. https://doi.org/10.22059/ijhst.2018.252636.222
Manica-Berto, R. (2009). Caracterização fenológica, fisíco-química e fitoquímica de cultivares de marmeleiro. Programa de Pós-Graduação em Agronomia, Universidade Federal De Pelotas.
Marschall von Bieberstein, F.A. (1808). Flora taurico-caucasica. Vol. 1. Typis Academicis.
Martínez, R., Legua, P., Martínez-Nicolás, J.J., & Melgarejo, P. (2019). Phenological growth stages of “Pero de Cehegín”(Malus domestica Borkh): codification and description according to the BBCH scale. Scientia Horticulturae, 246, 826–834. https://doi.org/10.1016/j.scienta.2018.11.067
Martínez-Valero, R., Melgarejo, P., Salazar, D.M., Martínez, R., Martínez, J.J., & Hernández, F.C.A. (2001). Phenological stages of the quince tree (Cydonia oblonga). Annals of Applied Biology, 139(2), 189–192. https://doi.org/10.1111/j.1744-7348.2001.tb00395.x
Meier, U. (2003). Phenological growth stages. Mono- and dicotyledonous plants. In M. Schwarz (Ed.), Phenology: an integrative environmental science. Tasks for vegetation science. Vol. 39 (pp. 269–283). Kluwer Academic Publishers.
Meier, U. (Ed.). (1997). Growth stages of plants. BBCH-Monograph. Blackwell Wissenschafts-Verlag.
Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., Lancashire, P.D., Schnock, U., Stauß, R., van den Boom, T., Weber, E., & Zwerger, P. (2009). The BBCH system to coding the phenological growth stages of plants – history and publications. Journal für Kulturpflanzen, 61(2), 41–52.
Meier, U., Graf, H., Hack, H., Hess, M., Kennel, W., Klose, R., Mappes, D., Seipp, D., Stauß, J., Streif, R.,& Boom, T. (1994). Phenological growth stages of pome fruits (Malus domestica Borkh. and Pyrus communis L.), stone fruits (Prunus species), currants (Ribes species) and strawberry (Fragaria × ananassa Duch.). Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 46(7), 141–153.
Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R., & Estrella, N. (2020). Climate change fingerprints in recent European plant phenology. Global Change Biology, 26(4), 2599–2612. https://doi.org/10.1111/gcb.15000
Mirabdulbaghi, M., Tavusi, M., Abdollahi, H., & Zarghami, R. (2023). Fruit mineral content and postharvest quality of quince (Cydonia oblonga Mill.) as affected by soil lime stress. Erwerbs-Obstbau, 65(6), 2623–2631. https://doi.org/10.1007/s10341-023-00978-6
Najman, K., Adrian, S., Sadowska, A., Świąder, K., Hallmann, E., Buczak, K., Waszkiewicz-Robak, B., & Szterk, A. (2023). Changes in physicochemical and bioactive properties of quince (Cydonia oblonga Mill.) and its products. Molecules, 28(7), Article 3066. https://doi.org/10.3390/molecules28073066
Ňorbová, M., Vollmannová, A., Fedorková, S., Musilová, J., & Lidiková, J. (2024). The forgotten fruit (Cydonia oblonga Mill.) and its chemical composition: a review. European Food Research and Technology, 250, 2093–2102. https://doi.org/10.1007/s00217-024-04543-7
Ozturk, A., Faizi, Z.A., & Kurt, T. (2022). Performance of some standard quince cultivars under ecological conditions of Bafra, Samsun. Yuzuncu Yil Universitesi Journal of Agricultural Sciences, 32(2), 320–330. https://doi.org/10.29133/yyutbd.1058908
Pallas, P.S. (1792). Catalogue des espèces de végétaux spontanés, observés en Tauride. Nova Acta Academiae Imperialis Petropolitanae, 10, 303–320.
Perju, I., Mineață, I., Golache, I.E., Corneanu, M., Corneanu, G., Sîrbu, S., Iurea, E., & Ungureanu, I.V. (2022). Influence of climate change on the phenological stages at the sour cherry genotypes. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 79(2), 61–66. https://doi.org/10.15835/buasvmcn-hort:2022.0013
Pinar, H., Kaymak, S., Ozongun, S., Uzun, A., Unlu, M., Bircan, M., Ercisli, S., & Orhan, E. (2016). Morphological and molecular characterization of major quince cultivars from Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 72–76. https://doi.org/10.15835/nbha44110228
POWO. (2024). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/
Radovic, A., Nikolic, D., Milatovic, D., Djurovic, D., & Trajkovic, J. (2016). Investigation of pollen morphological characteristics in some quince (Cydonia oblonga Mill.) cultivars. Turkish Journal of Agriculture and Forestry, 40(3), 441–449. https://doi.org/10.3906/tar-1511-76
Ruml, M., & Vulić, T. (2005). Importance of phenological observations and predictions in agriculture. Journal of Agricultural Sciences (Belgrade), 50(2), 217–225. https://doi.org/10.2298/jas0502217r
Sadeghnejad, S., Abdollahi, H., Davoodi, D., Tatari, M., & Khosroshahli, M. (2024). Identification of self-incompatibility alleles in quince (Cydonia oblonga Mill.). Plos One, 19(2), Article e0297595. https://doi.org/10.1371/journal.pone.0297595
Sakar, E. H., El Yamani, M., Boussakouran, A., & Rharrabti, Y. (2019). Codification and description of almond (Prunus dulcis) vegetative and reproductive phenology according to the extended BBCH scale. Scientia Horticulturae, 247, 224–234. https://doi.org/10.1016/j.scienta.2018.12.024
Salmasi, K.O., Gharesheikhbayat, R., Miri, S.M., Pirkhezri, M., & Davoodi, D. (2023). Phenology and self-(in)compatibility of some apricot (Prunus armeniaca L.) promising genotypes. Crop Breeding Journal, 13(1 & 2), 1–11.
Soyturk, A., Sen, F., Uncu, A.T., Celik, I., & Uncu, A.O. (2021). De novo assembly and characterization of the first draft genome of quince (Cydonia oblonga Mill.). Scientific Reports, 11(1), Article 3818. https://doi.org/10.1038/s41598-021-83113-3
Srivastava, K.K., Rajan, S., Kumar, D., Singh, S.R., & Verma, H.C. (2020). Growth pattern and phenological stages of peach (Prunus persica) under subtropics. The Indian Journal of Agricultural Sciences, 90(2), 356–360. https://doi.org/10.56093/ijas.v90i2.99022
Tatari, M., & Abdollahi, H. (2021). Evaluation of vegetative and reproductive characteristics of some quince (Cydonia oblonga Mill.) genotypes from central regions of Iran. International Journal of Fruit Science, 21(1), 945–954. https://doi.org/10.1080/15538362.2021.1948377
Tatari, M., Abdollahi, H., & Mousavi, A. (2018). Effect of pollination on dropping of flowers and fruits in new quince (Cydonia oblonga Mill.) cultivar and promising genotypes. Scientia Horticulturae, 231, 126–132. https://doi.org/10.1016/j.scienta.2017.10.045
Volkodav, V.V., Gonchar, O.M., Zaginaylo, M.I., Rukavets, L.M., & Ilyuchenko, O.S. (2004). Catalog of plant cultivars suitable for distribution in Ukraine in 2004 (fruit and berry crops, grapes). Alefa. (In Ukrainian)
Woodcock, D.W. (1992). Climate reconstruction based on biological indicators. The Quarterly Review of Biology, 67(4), 457–477. https://doi.org/10.1086/417794
Xie, Y., Li, J., Zhao, L., Liu, W., Gong, Q., Deng, M., Zhao, M., & Huang, S. (2023). Naturalization of an alien ancient fruit tree at a fine scale: community structure and population dynamics of Cydonia oblonga in China. Ecology and Evolution, 13(1), Article e9703. https://doi.org/10.1002/ece3.9703
Yang, Y., Ren, W., Tao, B., Ji, L., Liang, L., Ruane, A.C., Fisher, J.B., Liu, J., Sama, M., Li, Z., & Tian, Q. (2020). Characterizing spatiotemporal patterns of crop phenology across North America during 2000–2016 using satellite imagery and agricultural survey data. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 156–173. https://doi.org/10.1016/j.isprsjprs.2020.10.005
Yüksel, C., Mutaf, F., Demirtaş, I., Öztürk, G., Pektaş, M., & Ergül, A. (2013). Characterization of Anatolian traditional quince cultivars, based on microsatellite markers. Genetics and Molecular Research 12(4), 5880–5888. https://doi.org/10.4238/2013.november.22.16
Zadoks, J.C., Chang, T.T., & Konzak, C.F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
Zohary, D., & Hopf, M. (2000). Domestication of plants in the Old World. Oxford University Press.
This work is licensed under a Creative Commons Attribution 4.0 International License.