Pilot progress in DNA isolation and amplification from the material stored at the LWS herbarium
PDF

Keywords

herbarium specimens
plant DNA barcoding
DNA extraction methods
degraded DNA
LWS herbarium

How to Cite

Novikov, A., & Nachychko, V. (2024). Pilot progress in DNA isolation and amplification from the material stored at the LWS herbarium. Plant Introduction, (103/104), 31-42. https://doi.org/10.46341/PI2024011

Abstract

The isolation of DNA from the herbarium specimens deposited at the LWS herbarium (State Museum of Natural History of the NAS of Ukraine, Lviv, Ukraine) has been tested using the column-based protocol. The isolated DNA has been amplified using different nuclear and plastid primers. The yield of obtained total DNA showed no significant dependence from the year of collection and plant family of studied specimens. In general, the obtained DNA of LWS specimens had medium yield (mean – 56.47 ng/µL) but relatively low purity (mean 260/230 value – 0.85 units and mean 260/280 value – 1.66 units). The success of DNA amplification for old herbarium material varied from 12.5 % to 91.1 % depending on applied primers. The trnL P6 Loop primers demonstrated the best performance (91.1 % successful amplification), but due to short resulted DNA fragments, it was not possible to purify the product for further processing. UniPlant primers performed the worst, and only 12.5 % of samples taken from the LWS herbarium (excluding controls) were successfully amplified. In general, nuclear primers, except for UniPlant, demonstrated a better success rate (mean – 31.5 %) during the work with samples taken from the LWS herbarium. Meanwhile, the plastid primers, except for trnL P6 Loop, showed slightly lower amplification success (mean – 26.8 %).

https://doi.org/10.46341/PI2024011
PDF

References

Adams, R.P., & Sharma, L.N. (2010). DNA from herbarium specimens: I. Correlation of DNA sizes with specimens age. Phytologia, 92(3), 346–353.

Bakker, F.T., Bieker, V.C., & Martin, M.D. (2020). Herbarium collection-based plant evolutionary genetics and genomics. Frontiers in Ecology and Evolution, 8, Article 603948. https://doi.org/10.3389/fevo.2020.603948

Besnard, G., Gaudeul, M., Lavergne, S., Muller, S., Rouhan, G., Sukhorukov, A.P., Vanderpoorten, A., & Jabbour, F. (2018). Herbarium-based science in the twenty-first century. Botany Letters, 165(3–4), 323–327. https://doi.org/10.1080/23818107.2018.1482783

Bieker, V.C., & Martin, M.D. (2018). Implications and future prospects for evolutionary analyses of DNA in historical herbarium collections. Botany Letters, 165(3–4), 409–418. https://doi.org/10.1080/23818107.2018.1458651

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., & Leon, C.J. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5(1), Article e8613. https://doi.org/10.1371/journal.pone.0008613

Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., & Zhou, S. (2016). Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources, 16(1), 138–149. https://doi.org/10.1111/1755-0998.12438

Daru, B.H., & Rodriguez, J. (2023). Mass production of unvouchered records fails to represent global biodiversity patterns. Nature Ecology & Evolution, 7, 816–831. https://doi.org/10.1038/s41559-023-02047-3

Drábková, L., Kirschner, J.A.N., & Vlĉek, Ĉ. (2002). Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Molecular Biology Reporter, 20, 161–175. https://doi.org/10.1007/BF02799431

Drábková, L.Z. (2014). DNA Extraction from herbarium specimens. In P. Besse (Ed.), Molecular plant taxonomy: methods and protocols (pp. 69–84). Humana Press, Totowa. https://doi.org/10.1007/978-1-62703-767-9_4

Eckert, I., Bruneau, A., Metsger, D.A., Joly, S., Dickinson, T.A., & Pollock, L.J. (2024). Herbarium collections remain essential in the age of community science. Nature Communications, 15(1), Article 7586. https://doi.org/10.1038/s41467-024-51899-1

Forrest, L.L., Hart, M.L., Hughes, M.E., Wilson, H., Chung, K., Tseng, Y., & Kidner, C.A. (2019). The limits of Hyb-Seq for herbarium specimens: impact of preservation techniques. Frontiers in Ecology and Evolution, 7, Article 439. https://doi.org/10.3389/fevo.2019.00439

Hammer, Ø., Harper, D.A., & Ryan, P.D. (2001). PAST: Paleontological statistical software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Höpke, J., & Albach, D.C. (2018). CTAB vs. column-based DNA extraction from old herbarium material. Visnyk of the Lviv University. Series Biology, 78, 14–19. https://doi.org/10.30970/vlubs.2018.78.04

Höpke, J., Brewer, G., Dodsworth, S., Ortiz, E.M., & Albach, D.C. (2018). DNA extraction from old herbarium material of Veronica subgen. Pseudolysimachium (Plantaginaceae). Ukrainian Botanical Journal, 75(6), 564–575. https://doi.org/10.15407/ukrbotj75.06.564

Kurt, Y., Parmaksız, A., Kaya, Ö., Ulusal, D., & Çeçen, C. (2022). A simple and cost-effective protocol for DNA isolation from herbarium specimens. Annales Botanici Fennici, 59(1), 251–259. https://doi.org/10.5735/085.059.0137

Kusia, E.S., Borgemeister, C., Khamis, F. M., Copeland, R.S., Tanga, C.M., Ombura, F.L., & Subramanian, S. (2021). Diversity, host plants and potential distribution of edible saturniid caterpillars in Kenya. Insects, 12(7), Artile 600. https://doi.org/10.3390/insects12070600

Lang, P.L.M., Willems, F.M., Scheepens, J.F., Burbano, H.A., & Bossdorf, O. (2018). Using herbaria to study global environmental change. The New Phytologist, 221(1), 110–122. https://doi.org/10.1111/nph.15401

Loera-Sánchez, M., Studer, B., & Kölliker, R. (2020). DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Research Notes, 13, Article 35. https://doi.org/10.1186/s13104-020-4897-5

López, Z., Salazar Zúñiga, M.N., Femenia, A., Acevedo-Hernández, G.J., Godínez Flores, J.A., Cano, M.E., & Knauth, P. (2022). Dry but not humid thermal processing of Aloe vera gel promotes cytotoxicity on human intestinal cells HT-29. Foods, 11(5), Article 745. https://doi.org/10.3390/foods11050745

Marinček, P., Wagner, N.D., & Tomasello, S. (2022). Ancient DNA extraction methods for herbarium specimens: when is it worth the effort? Applications in Plant Sciences, 10(3), Article e11477. https://doi.org/10.1002/aps3.11477

Martin, M.D., Quiroz-Claros, E., Brush, G.S., & Zimmer, E.A. (2018). Herbarium collection-based phylogenetics of the ragweeds (Ambrosia, Asteraceae). Molecular Phylogenetics and Evolution, 120, 335–341. https://doi.org/10.1016/j.ympev.2017.12.023

McAssey, E.V., Downs, C., Yorkston, M., Morden, C., & Heyduk, K. (2023). A comparison of freezer-stored DNA and herbarium tissue samples for chloroplast assembly and genome skimming. Applications in Plant Sciences, 11(3), Article e11527. https://doi.org/10.1002/aps3.11527

Moorhouse-Gann, R.J., Dunn, J.C., de Vere, N., Goder, M., Cole, N., Hipperson, H., & Symondson, W.O. (2018). New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Scientific Reports, 8, Article 8542. https://doi.org/10.1038/s41598-018-26648-2

Novikov, A., Savytska, A., Kuzyarin, O., Nachychko, V.O., Susulovska, S., Rizun, V., Susulovsky, A., Hushtan, H., Hushtan, K., & Leleka, D. (2024). Data mobilisation in the LWS Herbarium: success and prospects. Biodiversity Data Journal, 12, Article e117292. https://doi.org/10.3897/BDJ.12.e117292

Nualart, N., Ibáñez, N., Soriano, I., & López-Pujol, J. (2017). Assessing the relevance of herbarium collections as tools for conservation biology. The Botanical Review, 83, 303–325. https://doi.org/10.1007/s12229-017-9188-z

Quatela, A., Cangrén, P., Jafari, F., Michel, T., de Boer, H., & Oxelman, B. (2023). Retrieval of long DNA reads from herbarium specimens. AoB Plants, 15(6), Article plad074. https://doi.org/10.1093/aobpla%2Fplad074

Ribeiro, R.A., & Lovato, M.B. (2007). Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. Genetics and Molecular Research, 6(1), 173–187.

Rosche, C., Baasch, A., Runge, K., Brade, P., Träger, S., Parisod, C., & Hensen, I. (2022). Tracking population genetic signatures of local extinction with herbarium specimens. Annals of Botany, 129(7), 857–868. https://doi.org/10.1093/aob%2Fmcac061

Rosche, C., Broennimann, O., Novikov, A., Mrázová, V., Boiko, G.V., Danihelka, J., Gastner, M.T., Guisan, A., Kožić, K., Lehnert, M., Mueller-Schaerer, H., Nagy, D.U., Remelgado, R., Ronikier, M., Selke, J.A., Shiyan, N., Suchan, T., Thoma, A.E., Zdvořák, P., & Mráz, P. (2025). Herbarium specimens reveal a cryptic invasion of polyploid Centaurea stoebe in Europe. The New Phytologist, 245(1), 392–405. https://doi.org/10.1111/nph.20212

Särkinen, T., Staats, M., Richardson, J.E., Cowan, R.S., & Bakker, F.T. (2012). How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PloS ONE, 7(8), Article e43808. https://doi.org/10.1371/journal.pone.0043808

Savolainen, V., Cuénoud, P., Spichiger, R., Martinez, M.D., Crèvecoeur, M., & Manen, J.F. (1995). The use of herbarium specimens in DNA phylogenetics: evaluation and improvement. Plant Systematics and Evolution, 197, 87–98. https://doi.org/10.1007/BF00984634

Staats, M., Cuenca, A., Richardson, J.E., Vrielink-van Ginkel, R., Petersen, G., Seberg, O., & Bakker, F.T. (2011). DNA damage in plant herbarium tissue. PLoS ONE, 6(12), Article e28448. https://doi.org/10.1371/journal.pone.0028448

Taberlet, P., Coissac, É., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., Vermat, T., Corthier, G., Brochmann, C., & Willerslev, E. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3), Article e14. https://doi.org/10.1093/nar%2Fgkl938

Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5), 1105–1109. https://doi.org/10.1007/BF00037152

Tarieiev, A.S., Girin, A.I., Karpenko, N.I., Tyshchenko, O.V., & Kostikov, I.Y. (2011). Modified method of DNA extraction from herbarium specimens. Chornomors’ky Botanical Journal, 7(4), 309–317. (In Ukrainian)

Tynkevich, Y.O., Novikov, A.V., Chorney, I.I., & Volkov, R.А. (2022). Organization of the 5S rDNA intergenic spacer and its use in the molecular taxonomy of the genus Aconitum L. Cytology and Genetics, 56(6), 494–503. https://doi.org/10.3103/S0095452722060111

Weiß, C.L., Schuenemann, V.J., Devos, J., Shirsekar, G., Reiter, E., Gould, B.A., Stinchcombe, J.R., Krause, J., & Burbano, H.A. (2015). Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. Royal Society Open Science, 3(6), Article 160239. https://doi.org/10.1098/rsos.160239

White, T.J., Bruns, T.D., Lee, S.B., & Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M.A. Innis, D.H. Gelfand, J.J. Sninsky, & T.J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). Academic Press, New York. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Xie, P.J., Ke, Y.-T., Kuo, & L.-Y. (2023). Modified CTAB protocols for high-molecular-weight DNA extractions from ferns. Applications in Plant Sciences, 11(3), Article e11526. https://doi.org/10.1002/aps3.11526

Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., Pang, X., Xu, H., Zhu, Y., Xiao, P., & Chen, S. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE, 5(10), Article e13102. https://doi.org/10.1371/journal.pone.0013102

Zeng, C.X., Hollingsworth, P.M., Yang, J., He, Z.S., Zhang, Z.R., Li, D.Z., & Yang, J.B. (2018). Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods, 14, Article 43. https://doi.org/10.1186/s13007-018-0300-0

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.