Abstract
Objective – to investigate biochemical properties of plant raw material of 1 cultivar and 14 varieties of Panicum virgatum L. in conditions of M.M. Gryshko National Botanical Garden of the NAS of Ukraine.
Material and methods. Investigated plants were 1 cultivar and 14 varieties of Panicum virgatum collected in an experimental collection of Cultural Flora Department of National Botanical Garden of the NAS of Ukraine: Panicum virgatum f. DB (PVDB), P. virgatum f. DN (PVDN), P. virgatum f. PL (PVPL), P. virgatum f. PN1 (PVPN1), P. virgatum f. PN2 (PVPN2), P. virgatum f. PN3 (PVPN3), P. virgatum f. PB (PVPB), P. virgatum f. PP (PVPP), P. virgatum f. RL (PVRL), P. virgatum f. RR (PVRR), P. virgatum f. SL1 (PVSL1), P. virgatum f. SL2 (PVSL2), P. virgatum f. VP (PVVP), P. virgatum f. VR (PVVR), P. virgatum cv. Zoriane (PVZ). The content of dry matter was determined according to A.I. Yermakov, the total content of sugars, monosaccharides and ascorbic acid concentration – according to V.P. Krishchenko, the content of carotene – according to B.P. Pleshkov, the content of ash – according to Z.M. Hrycaenko. Energetic value of dry plant raw material measured on calorimeter IKA200. The content of photosynthetic pigments in leaves detected according to M.M. Musienko on spectrophotometer Unico UV 2800.
Results. In the period of anthesis the plant raw material of Panicum virgatum accumulated dry matter from 34.05 % (PVZ) to 48.21 % (PVPL), monosaccharides – from 2.68 % (PVSL2) to 5.92 % (PVPN2), ascorbic acid – from 14.39 mg% (PVRL) to 79.50 mg% (PVSL1), carotene – from 0.277 mg% (PVPB) to 1.407 mg% (PVSL2), ash – from 1.88 % (PVVR) to 4.63 % (PVPN1) and total content of sugars – from 4.11 % (PVSL2) to 10.49 % (PVPN2). The calorific value of dry raw was from 3588.18 cal/g (PVVR) to 3719.22 cal/g (PVPN1). The ratio of photosynthetic pigments content was 1.09 (PVPN3) – 5.01 (PVPP), the ratio of the sum of chlorophylls to carotenoids content – from 2.47 (PVSL2) to 9.30 (PVPD).
Conclusions. Obtained data demonstrated that in conditions of M.M. Gryshko National Botanical Garden of the NAS of Ukraine cultivar and varieties of Panicum virgatum are the valuable source of nutrients in the period of anthesis. Among investigated plants the PVPL genotype characterized by the most content of dry matter and chlorophyll b, PVPN2 – total content of sugars and monosaccharides, PVSL1 – ascorbic acid, PVSL2 – carotene, PVPN1 – ash and calorific value, PVPP – chlorophyll a and ratio of chlorophylls, PVPN3 – carotenoids.
References
Aimar, D., Calafat, M., Andrade, A.M., Carassay, L., Bouteau, F., Abdala, G. and Molas, M.L. (2014), Drought effects on the early development stages of Panicum virgatum L.: cultivar differences. Biomass and Bioenergy, vol. 10, pp. 1—11. http://dx.doi.org/10.1016/j.biombioe.2014.03.004
Ashraf, M. and Harris, P.J.C. (2013), Photosynthesis under stressful environments: an overview. Photosynthetica, vol. 51, N 2, pp. 163—190. http://dx.doi.org/10.1007/s11099-013-0021-6
Florine, S.E., Moore, K.J., Fales, S.L., White, T.A. and Burras Lee, C. (2006), Yield and composition of herbaceous biomass harvested from naturalized grassland in southern Iowa. Biomass and Bioenergy, vol. 30, pp.522— 528. http://dx.doi.org/10.1016/j.biombioe.2005.12.007
Hrycajenko, Z.M., Hrycajenko, V.P. and Karpenko, V.P. (2003), Metody biologichnyh ta agrohimichnyh doslidzhen roslyn i gruntiv [Methods of biological and agrochemical investigations of plants and soils]. Kyiv: Nichlava, 320 p.
Hu, Z., Sykes, R., Davis, M.F., Brummer, Ch.E. and Ragauskas, A.J. (2010), Chemical profiles of switchgrass. Bioresource Technology, vol. 101, pp. 3253—3257. http://dx.doi.org/10.1016/j.biortech.2009.12.033
Jefferson, P.G. and McCaughey, M.P. (2012), Switchgrass (Panicum virgatumL.) cultivar adaptation, biomass production, and cellulose concentration as affected by latitude of origin. ISRN Agronomy, vol. 2012, Article ID 763046. http://dx.doi.org/10.5402/2012/763046
Klinger, J.L., Westover, T.L., Emerson, R.M., Williams, C.L., Hernandez, S., Monson, G.D. and Ryan, J.Ch. (2018), Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Applied Energy, vol. 228, pp. 535—545. https://doi.org/10.1016/j.apenergy.2018.06.107
Krischenko, V.P. (1983), Metody ocenki kachestva rasti tel’noy produkcii [Methods for evaluating of quality of plant production]. Moscow: Kolos, 192 p.
Kwit, C. and Stewart, C.N. (2012), Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock. Ecological Applications, vol. 22, pp. 3—7.
Liatukas, M ., LemeN ien O , N., Butket O , B., Cesevi P ien O , J. and Dabkevi P ien O , G. (2015), Chlorophyll values as a measure of genetic variation of switchgrass (Panicum virgatum L.) populations under cool temperate climate conditions. Zemdirbyste-Agriculture, vol. 102, N 2, pp. 159—166. https://doi.org/10.13080/z-a.2015.102.021
Miesel, J.R., Jach-Smith, L.C., Renz, M.J. and Jackson, R.D. (2017), Distribution of switchgrass (Panicum virgatum L.) aboveground biomass in response to nitrogen addition and across harvest dates. Biomass and Bioenergy, vol. 100, pp. 74—83. http://dx.doi.org/10.1016/j.biombioe.2017.03.012
Missaoui, A.M., Fasoula, V.A. and Bouton, J.H. (2005), The effect of low plant density on response to selec tion for biomass production in switchgrass. Euphy tica, vol. 142, pp. 1—12. https://doi.org/10.1007/s10681-005-0149-y
Mitchell, R., Vogel, K.P. and Uden, D.R. (2012), The feasibility of switch-grass for biofuel production. Biofuels, vol. 3, N 1, pp. 47—59.
Mohammed, Y.A., Raun, W., Kakani, G., Zhang, H., Taylor, R., Desta, K.G., Jared, G., Mullock, J., Bushong, J., Sutradhar, A., Ali, S.M. and Reinert, M. (2015), Nutrient sources and harvesting frequenting on quality biomass production of switchgrass (Panicum virgatum L.) for biofuel. Biomass and Bioenergy, vol. 81, pp. 242— 248. http://dx.doi.org/10.1016/j.biombioe.2015.06.027
Monti, A., Virgilio, N. and Venturi, G. (2008), Mineral composition and ash content of six major energy crops. Biomass and Bioenergy, vol. 32, pp. 216—223. https://doi.org/10.1016/j.biombioe.2007.09.12
Musiyenko, M.M., Parshikova, T.V. and Slavnyj, G.S. (2001), Spektrofotometrychni metody v praktyci fiziologii, biohimii ta ekologii roslyn [Spectrophotometric methods in practical physiology, biochemistry and ecology of plants]. Kyiv: Fitosociocentr, 200 p.
Parrish, D.J and Fike, J.H. (2005), The biology and agronomy of switchgrass for biofuels. Critical Reviews in Plant Sciences, vol. 24, N 5—6, pp. 423—459.
Pleshkov, B.P. (1985), Prakticum po biohimii rasteniy [Plant biochemistry workshop]. Moscow: Kolos, 256 p.
Prochnow, A., Heiermann, M., Plochl, M., Amon, T. and Hobbs, P.J. (2009), Bioenergy from permanent grassland — a review: 2. Combustion. Bioresource Technology, vol. 100, pp. 4945—4954. https://doi.org/10.1016/j.biortech.2009.05.069
Rakhmetov, D.B., Vergun, O.M., Rakhmetova, S.O. (2014), Panicum virgatum L. — perspektyvnyi intro ducent u Nacionalnkmu botanichnomu sadu im. M.M. Gryshka NAN Ukrajiny [Panicum virgatum L. — promicing introduced crop in M.M. Gryshko NAS of Ukraine]. Introdukciya Roslyn [Plant In troduction], vol. 63, N 3, pp. 3—14. https://doi.org/10.5281/zenodo.1554736
Rakhmetov, D.B., Vergun, O.M., Revunova, L.G., Shymanska, O.V., Rakhmetova, S.O., Fishchenko, V.V. and Druz, N.G. (2017), Investigation of bentgrass (Agrostis L.) in M.M. Gryshko National Botanical Garden of the NAS of Ukraine. Introdukciya Roslyn [Plant In troduction], vol. 75, N 3, pp. 87—95. https://doi.org/10.5281/zenodo.2325206
Sabir, P., Ashraf, M., Hussain, M. and Jamil, A. (2009), Ralationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. Pakistan Journal of Botany, vol. 41, pp. 2957—2964.
Tigunova, O.O. and Shulga, S.M. (2015), New strainproducers of biobutanol. III. Methods of increased butanol accumulation from biomass of switchgrass Panicum virgatum L. Biotechnologia Acta, vol. 8, N 4, pp. 92—97. http://dx.doi.org/10.15407/biotech8.04.092
Vergun, O., Rakhmetov, D., Fishchenko, V., Rakhmetova, S., Shymanska, O. and Bondarchuk, O. (2017), The biochemical composition of plant raw material of Panicum virgatum L. varietis. Agrobiodiversity for improving nutrition, health and life quality, vol. 1, pp. 482—487. http://dx.doi.org/10.15414/agrobiodiversity.2017.2585-8246.482-487
Vergun, O.M., Rakhmetov, D.B., Fishchenko, V.V., Rackhmetova, S.O., Shymanska, O.V and Druz, N.G. (2017), Biochemical composition of the genus Miscanthus Anderss. plant raw material in conditions of introduction. Introdukciya Roslyn [Plant Introduction], vol. 76, N 4, pp. 79—87. https://doi.org/10.5281/zenodo.2327138
Vergun, O.M. and Rakhmetov, D.B. (2018), Antioxidant potential of some plants of Brassicaceae Burnett and Poaceae Barnhart. Introdukciya Roslyn [Plant Introduction], vol. 77, N 1, pp. 87—95. https://doi.org/10.5281/zenodo.2174708
Wilson, D.M., Dalluge, D.L., Rover, M., Heaton, E.A. and Brown, R.C. (2013), Crop management impacts biofuel quality: influence of switchgrass harvest time on yield, nitrogen and ash of fast pyrolysis products. Bioenergy Resources, vol. 6, pp. 103—113. http://dx.doi.org/10.1007/s12155-012-9240-0
Woli, P., Paz, J.O., Lang, D.J., Baldwin, B.S. and Kiniry, J.R. (2012), Soil and variety effect on the energy and carbon balances of switchgrass-derived ethanol. Journal of Sustainable Bioenergy Systems, vol. 2, pp. 65—74. http://dx.doi.org/10.4236/jsbs.2012.24010
Yermakov, A.I., Arasimovich, V.V., Smirnova-Ikonniko va, M.I. and Yarosh, N.P. (1972), Metody biohimicheskoho issledovaniya rasteniy [The methods of biochemical investigations of plants]. Leningrad: Kolos, 456 p.
Zhuo, Y., Zhang, Y., Xie, G. and Xiong, S. (2015), Ef fects of salt stress on biomass and ash composition of switchgrass (Panicum virgatum). Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, vol. 65, N 4, p. 300—309. http://dx.doi.org/10.1080/09064710.2015.1006670

This work is licensed under a Creative Commons Attribution 4.0 International License.