Biochemical characteristic of plant raw material of Camelina sativa (L.) Crantz
PDF

Keywords

Camelina sativa (L.) Crantz
biochemical сomposition
photosynthetic pigments
antiradical activity

How to Cite

Vergun, O., Rakhmetov, D., Shymanska, O., Fishchenko, V., Druz, N., & Rakhmetova, S. (2017). Biochemical characteristic of plant raw material of Camelina sativa (L.) Crantz. Plant Introduction, 74, 80-88. https://doi.org/10.5281/zenodo.2300770

Abstract

Objective – to study the content of nutrients in the plants of different varieties and cultivars of Camelina sativa (L.) Crantz in the flowering stage.

Material and methods. Investigations were carried out with cultivars and varieties of C. sativa own selection. We used to research the laboratory methods.

Results. It was marked the accumulation of dry matter from 18.13 % (сv. Peremoha) to 23.38 % (сv. Kolondaik), ascorbic acid – from 207.23 mg% (сv. Kolondaik) to 410.23 mg% (сv. Pivnichna krasunya), carotene – from 0.43 mg% (сv. Yevro-12) to 2.23 mg% (сv. Peremoha), ash – from 5.08 % (сv. Kolondaik) to 8.75 % (f. ЕОRZHI AF-1), calcium – from 1.008 % (сv. Yevro-12) to 2.633 % (сv. Kolondaik), phosphorus – from 0.086 % (сv. Mirazh) to 0.157 % (f. ЕОRZHIAF-1), the total content of sugars – from 4.76 % (f. ЕОRZHIAFCH) to 8.12 % (сv. Peremoha). Power plant value of investigated plants was from 3925.71 to 4097.00 kkal/kg that depends on cultivar and variety. The content of pigments and their ration are determined. The ration of chlorophylls was from 2.51 (сv. Yevro-12) to 2.82 (сv. Pivnichna krasunya), chlorophylls to carotenoids – from 1.99 (сv. Pivnichna krasunya) to 3.22 (сv. Mirazh). Research of antioxidant activity by DPPH-method (reaction with 2.2-diphenyl-1-picrylhydrazyl radical) shown that the methanol extracts from above-ground part of plants inhibited the activity of radical on 25.67–55.88 % and water extracts – on 47.18–84.60 % that depends from cultivar or variety.

Conclusions. The raw plant material of C. sativa is potent source of the vitamins, macroelements, ash and total content of sugars. These plants can compete with the other energetic cultures by energetic value.

https://doi.org/10.5281/zenodo.2300770
PDF

References

Volkov, V.A., Dorofeeva, N.A. and Pahomov, P.M. (2009), Kineticheskiy metod analiza antiradikalnoy aktivnosti ekstraktov rasteniy [The kinetic method of analyse of antiradical activity of plant extracts], vol. 43, N 6, pp. 27—31.

Hrycajenko, Z.M., Hrycajenko,V.P. and Karpenko, V.P. (2003), Metody biologichnyh ta agrohimichnyh doslidzhen roslyn i gruntiv [Methods of biological and agrochemical investigations of plants and soils]. Kyiv: Nichlava, 320 p.

Kataloh roslyn viddilu novyh kultur [Catalogue of plants of new culture department] (2015), Kyiv: Fitosociocentr, 112 p.

Krischenko, V.P. (1983), Metody ocenki kachestva rastitelnoy produkcii [Methods for evaluating of quality of plant production]. Mosсow: Kolos, 192 p.

Lukyanova, L.M. (1982), Ekologo-fisiologiches kiye aspekty izucheniya pigmentnoy sistemy rasteniy. II. Vliyaniye ekologo-heohraficheskyh uslovij I systematicheskoj prinadlejnosti rastenij [Ecological and physiological aspects of investigation of plant pigment system. II. Influence of ecological and geographical conditions and systematical identification of plants]. Botanicheskiy zhurnal [Botanical Journal], vol. 67, N 4, pp. 409—418.

Musiyenko, M.M., Parshykova, T.V. and Slavnyj, G.S. (2001), Spektrofotometrychni metody v praktici fi ziologiji, biohimiji ta ekologiji roslyn [Spectrophotometric methods in practical physiology, biochemistry and ecology of plants]. Kyiv: Fitosociocentr, 200 p.

Pleshkov, B.P. (1985), Prakticum po biohimii rasteniy [Plant biochemistry workshop]. Moskva: Kolos, 256 p.

Blyum, R.Ya., Boychuk, Yu.M., Yemetc, A.I. and Rakhmetova, S.O. (2016), Porivnyalna ocinka zhyrnokyslotnogo skladu olij nasinnya form ta sortiv tyfonu, redky olijnoyi i ryzhiyu yak perspektyvnoyi syrovyny dlya otrymannya biodyselyu [Comparative analysis of fatty acid composition for oils from seeds of tyfon, oil radish and Camelina breeding forms and varieties as perspective source for biodiesel production]. Factory experymentalnoji evoljuciji orhanizmiv [Factors of experimental evolution of organism], N 18, pp. 61—66.

Pochynok, H.N. (1976), Metody biohimicheskogo analiza rasteniy [Methods of biochemical analyse of plants]. Kyjiv: Naukova dumka, 336 p.

Rakhmetov, D.B. (2011), Teoretychni ta prykladni aspekty introduktsiyi roslyn v Ukrayini [Theoretical and applied aspects of plant introductionin Ukraine]. Kyiv: Ahrar Media Grup, 398 p.

Strzhalka, K., Kostecka-Gugala, A. and Latovski, D. (2003), Karotinoidy rasteniy i stressovoye vozdeystvie okruzhayushhey sredy: rol modulyacii fizicheskih svoystv membrane karotinoidami [Carotenoids of plants and stress action of invironment: role of modulation of physical particularities of membranes by carotenoids]. Fisiolohiya rasteniy [Physiology of plants], vol. 50, N 2, pp. 188—193.

Cherevchenko T.M., Rakhmetov D.B. and Haponenko M.B. (2012), Zberezhennya ta zbahachennya roslynnyh resursiv shlyahom introdukciyi, selekcii ta biotechnologii [Preservation and enrichment plant resources by introduction, breeding and biotechnology]. Kyiv: Fitosociocentr, 432 p.

Rakhmetov, D.B., Blyum, Ya.B., Yemec, A.I., Boychuk Yu.M., Andrushhenko, O.L., Vergun, O.M. and Rakhmetova, S.O. (2014), Camelina sativa (L.) Crantz — cinna olijna kultura [Camelina sativa (L.) Crantz — valuable oil plant]. Introdukciya Roslyn [Plant Introduction], N 2, pp. 50—58. https://doi.org/10.5281/zenodo.1494320

Abramovic, H. and Abram, V. (2006), Effect of added rosemary extract on oxidative stability of Camelina sativa oil. Acta Agriculturae Slovenica, vol. 87, N 2, pp. 255—261.

Agarwal, A., Pant, T. and Ahmed, Z. (2010), Camelina sativa: a new crop with biofuel potential introduced in India. Current Science, vol. 99, N 9, pp. 1194—1195.

Ciubota-Rosie, C., Ruiz, J.R., Ramos, M.J. and Perez, A. (2013), Biodiesel from Camelina sativa: a comprehensive characterization. Fuel, vol. 105, pp. 572— 577.

Blackburn, G.A. (2007), Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, vol. 58, N 4, pp. 855—867.

Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995), Use of a free radical method to evaluate antioxidant activity. LWT — Food Science and Technology, vol. 28, N 1, pp. 25—30.

Ciurescu, G., Ropota, M., Toncea, I. and Habeanu, M. (2016), Camelia (Camelina sativa (L.) Crantz variety) oil and seeds as n-3 fatty acids rich products in broiler diets and its effects on performance, meat fatty acid composition, immune tissue weights and plasma metabolic profile. Journal of Agricultural Science and Technology, vol. 18, pp. 315—326.

Daly, T., Jiwan, M.A., O’Brien, N.M. and Aherne, S.A. (2010), Carotenoid content of commonly consumed herbs and assessment of their bioaccessibility using an in vitro digestion model. Plant Foods for Human Nutrition, vol. 65, pp. 164—169.

Cinar, I. (2003), Carotenoid pigment loss of freeze-dried plant samples under different storage conditions. Electronical Journal of Environmental, Agricultural and Food Chemistry, vol. 2, N 5, pp. 563—569.

Dobre, P. and Jurcone, S. (2011), Camelina sativa — an oilseed crop with unique agronomic characteristics. Scientific Papers, vol. 54, pp. 425—430.

Karcauskiene, D., Sendzikiene, E., Makareviciene, V., Zaleckas, E., Repsiene, R. and Ambrazaitiene, D. (2014), False flax (Camelina sativa L.) as an alternative source for biodiesel production. Zemdirbyste-Agricultu re, vol. 101, N 2, pp. 161—168.

Hrastar, R., Petrisic, M.G., Ogribc, N. and Kosir, I.J. (2009), Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication. Journal of Agricultural and Food Chemistry, vol. 57, pp. 579—585.

Frame, D.D., Palmer, M. and Peterson, B. (2007), Use of Camelina sativa in the diets of young turkeys. Journal of Apply Poultry Resource, vol. 16, pp. 381— 386.

Frohlich, A. and Rice, B. (2005), Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial Crops and Products, vol. 21, pp. 25—31.

Garrity, S.R., Eitel, J.U.H. and Vierling, L.A. (2011), Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content. Remote Sensing of Environment, vol. 115, pp. 628—635.

Gesch, R.W. (2009), Influence of genotype and sowing date on Camelina growth and yielding the north central U.S. Industrial Crops and Products, vol. 54, pp. 209—215.

Gesch, R.W. and Cermak, S.C. (2011), Sowing date and tillage effects on fall-seeded Camelina in the Northern Corn Belt. Agronomy Journal, vol. 103, N 4, pp. 980— 987.

Hunsaker, D.J., French, A.N. and Thorp, K.R. (2013), Camelina water use and seed yield response to irrigation scheduling in an arid environment. Irrigation Science, vol. 31, pp. 911—929. DOI: 10.1007/s00271- 012-0368-7

Katar, D. (2013), Determination of fatty acid composition on different false flax (Camelina sativa (L.) Crantz) genotypes under Ankara ecological conditions. Turkish Journal of Field Crops, vol. 18, N 1, pp. 66—72.

Krohn, B.J. and Fripp, M. (2012), A life cycle assessment of biodiesel derived from the ‘‘niche filling’’ energy crop camelina in the USA. Applied Energy, vol. 92, pp. 92—98.

Lichtenthaler, H.K. (1987), Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, vol. 148, pp. 350—382.

Moser, B.R. and Vaughn, S.F. (2010), Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, vol. 101, pp. 646—653.

Russo, R. and Reggiani, R. (2015), Seed protein in Camelina sativa (L.) Crantz var. Calena. International Journal of Plant and Soil Science, vol. 8, N 2, pp. 1—6.

Singh, R., Nasim, M. and Tiwari, S. (2014), Camelina sativa: success of a temperate biofuel crop as intercrop in tropical conditions of Mhow, Madhya Pradesh, India. Current Science, vol. 107, N 3, pp. 359—360.

Terpinc, P. and Abramovic, H. (2016), Oljna pogaca navadnega ricka (Camelina sativa (L.) Crantz) — neizkorisceni vir fenolnihsp ojin. Acta agriculturae Slovenica, vol. 107, N 1, pp. 243—250.

Toncea, I., Necseriu, D., Prisecaru, T., Balint, L.-N., Ghilvacs, M.I. and Popa, M. (2013), The seed’s and oil composition of Camelia — first Romanian cultivar of camelina (Camelina sativa (L.) Crantz). Romanian Bio technological Letters, vol. 18, N 5, pp. 8594— 8602.

Kim, H., Silva, J.E., Vu, H.S., Mockaitis, K., Nam, J.-W. and Cahoon, E.B. (2015), Toward production of jet fuel functionality in oilseeds: identification of FatB acylacyl carrier protein thioesters and evaluation of combinatorial expression strategies in Camelina seeds. Journal of Experimental Botany, vol. 66, N 14, pp. 4251— 4265. https://doi.org/10.1093/jxb/erv225

Abdullah, H.M., Akbari, P., Abdullah, H.M., Paulose, B., Shnell, D. et al. (2016), Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnology for Biofuels, vol. 9, pp. 2—19. https://doi.org/10.1186/s13068-016-0555-5

Wettstein, D., Gough, S. and Kannangara, C.G. (1995), Chlorophyll biosynthesis. The Plant Cell, vol. 7, pp. 1039—1057.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.